In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development

نویسندگان

  • Evy Verbueken
  • Derek Alsop
  • Moayad A. Saad
  • Casper Pype
  • Els M. Van Peer
  • Christophe R. Casteleyn
  • Chris J. Van Ginneken
  • Joanna Wilson
  • Steven J. Van Cruchten
چکیده

At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)-a group of drug-metabolizing enzymes-in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biotransformation of Cytochrome P450 Isozymes Involved in Its Taxol Metabolism by Human Liver Microsomes: Identification

The biotransformation of taxol by human liver was investigated in vitro with microsomes isolated from adult and developing human tissues. In vitro, no metabolism was detected with kidney microsomes, whereas two metabolites were generated by liver microsomes. The most prominent metabolite, termed M5, corresponded to an hydroxylation at the C6 position on the taxane ring, while the other metaboli...

متن کامل

Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation.

The biotransformation of taxol by human liver was investigated in vitro with microsomes isolated from adult and developing human tissues. In vitro, no metabolism was detected with kidney microsomes, whereas two metabolites were generated by liver microsomes. The most prominent metabolite, termed M5, corresponded to an hydroxylation at the C6 position on the taxane ring, while the other metaboli...

متن کامل

Simultaneous Screening of Activities of Five Cytochrome P450 and Four Uridine 5'-Diphospho-glucuronosyltransferase Enzymes in Human Liver Microsomes Using Cocktail Incubation and Liquid Chromatography-Tandem Mass Spectrometry.

Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are major metabolizing enzymes in the biotransformation of most drugs. Altered P450 and UGT activities are a potential cause of adverse drug-drug interaction. A method for the simultaneous evaluation of the activities of five P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) and four UGTs (UGT1A1, UGT1A4, UGT1A9, and...

متن کامل

Dmd063016 1137..1146

CytochromeP450 (P450) and uridine 59-diphospho-glucuronosyltransferase (UGT) are major metabolizing enzymes in the biotransformation of most drugs. Altered P450 and UGT activities are a potential cause of adverse drug-drug interaction. A method for the simultaneous evaluation of the activities of five P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) and four UGTs (UGT1A1, UGT1A4, UGT1A9, and ...

متن کامل

In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5.

Midazolam, triazolam (TRZ), testosterone, and nifedipine have all been widely used as probes for in vitro metabolism of CYP3A. We used these four substrates to assess the contributions of CYP3A4 and CYP3A5 to in vitro biotransformation in human liver microsomes (HLMs) and in recombinant enzymes. Recombinant CYP3A4 and CYP3A5 (rCYP3A4 and rCYP3A5) both produced 1-OH and 4-OH metabolites from mid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017